National Research Council

"Available consumption data and current population and fertility rates indicate that over 60,000 newborns annually {in the US} might be at risk for adverse neurodevelopmental effects from *in utero* exposure to MeHg {from fish consumption}"

Toxicological Effects of Methylmercury p325, 2000

No explanation of the basis for this statement was provided

MeHg POISONING EPISODES

- υ 1953 Sweden
- υ 1958 Minamata
- υ 1965 Niigata
- υ 1971 Iraq
- υ 1972 New Mexico

- Treated grain
- Industrial pollution
- Industrial pollution
- Treated grain
- Treated grain

Yudo

T.H. 65y

Lives on Minamata Bay

MeHg Poisoning

Japan

From Eugene Smith's Photo Essay Minamata

Minamata Disease Clinical Findings

- υ Mental retardation
- υ Cerebral palsy (extrapyramidal)
- υ Microcephaly
- υ Ataxia (dysarthria, cerebellar signs)
- v Strabismus
- υ Seizures

Japan

From Eugene Smith's Photo Essay Minamata

Waste outlet Showa Denka Plant

Kanasa on Agano River 2002

C.F. 37 y/o Niigata

Congenital MeHg Poisoning.

Mother with only Sensory disturbance. Mom hair 293 ppm

Cannot speak
writes fairly well
Cooks
Dystonic CP

Iraq 1973

Iraq – Maternal Hair

Dr. Marsh examining child in Iraq 1973

Hypothesis

υ Exposure to MeHg from fish consumption during pregnancy could be associated with subtle adverse neurodevelopmental outcomes in children.

People Depending on Fish for Protein

- υ 1 Billion in Asia
 - –Japanese consume 1/5 of all fish caught
- υ 1 in 5 in Africa

Epidemiology Studies of Fish Consumption

υ 1984 New Zealand fish (max 4.4)

υ 1936 Canada fish (max 27)

υ 1995 Peru fish

υ 1995 Seychelles fish

υ 1997 Faeroes whale & fish

Epidemiology Studies of Fish Consumption

υ <u>Study</u>	N	Age	Max Hg ppm
υΝΖ	64	4-6y	19 (86)
υ Canada	215	12-30m	23
υ Peru	131	?	30
υ Seychelles	740	.5-9y	27
υ Faeroes	915	7.5y	>10 (91)

SCDS – Maternal Hair

Epidemiology Studies of Fish Consumption

υ Study Associations (Hg & outcome)

υ NZ* DDST, TOLD, WISC (2), MCSA (2)

υ Canada Neuro exam (males only), not DDST

υ Peru None

υ Seychelles None (5 evaluations to 107 mo)

υ Faeroes FT, CPT, WISC-DS, BNT, CVLT

^{*} Associations found only by omitting child with 86 ppm exposure

New Zealand

- υ Small N in case control study
- υ Mismatching
 - ethnicity

testing times

- υ Association of test results best with
 - child's ethnic background & social class
- υ Maternal covariates omitted
 - intelligence education

New Zealand

- υ Reanalysis 1998 Crump
- υ Associations with Hg exposure
- υ TOLD
- υ WISC Full Scale IQ & Perceptual Perf
- υ MSCA Motor Scale & Perceptual Perf

Φ Present only when highest value (86 ppm) dropped

Low dose MeHg exposure Canadian study

υ 243 Cree Indian children

- υ Association with abnormal muscle tone and DTRs
 - Present only in males

Canada

- Neurological abnormalities differed from effects previously described
- Neurological abnormality associated with mercury was non-physiologic
 - DTRs either increased or decreased
- υ No consistent dose response relationship
- υ 4 Pediatric Neurologists

Faeroe Islands

- v Cohort = 915
- υ Exposure from whale meat / blubber
 - Episodic Hg (3 ppm) PCB high
- υ Examined age 7 years
- υ Extensive test battery 4 hours
- υ Statistical association with tests of
 - -language

- attention

- memory

- -visual perception motor skills

Where is Seychelles?

Testing Design

SCDS MAIN STUDY RESULTS 6 mo

υ DDST-R

- Small number of abnormal or questionable scores
 Φ no analysis possible
- υ Neurological examination
 - Overall neurological small number of abnormal exams
 Φ no analysis possible
 - DTR's no mercury effect
 - Limb tone no mercury effect
 - Φ associated with gender (M), maternal education, and birth weight

SCDS MAIN STUDY RESULTS 19 & 29 mo

- v BSID-MDI mean 19m = 97, 29m = 100
 - no association with Hg
- v BSID-PDI mean 19m = 126, 29m = 121
 - no association with Hg
- υ Infant behavior record (6 items)
 - activity associated with Hg (as Hg increased, activity decreased in males only)

SCDS Main Study Results 66 mo

<u>Endpoint</u>	<u>Prenatal</u>	Postnatal
MSCA GCI	NS	NS
PLS	+	+
Bender - errors	NS	+ males
W-J Applied Problems	NS	+
W-J Letter Word	NS	NS
CBCL	NS	NS

Davidson et al., JAMA 1998

SCDS Main Study Results 107 mo

υ Expected effects of co-variates

υ Modest R²s

- υ endpoints (21) associations
 - one adverse
 - one beneficial

Congenital MeHg Poisoning

υ	Country	# Pts	Exposure – Mat hair ppm
υ	USA	1	Unknown (sibs >1000)
υ	Minamata	>100	Unknown
υ	Niigata	1	293 (13 with 50-115 N)
υ	Iraq		
	– Choi	2	181, 297
	– Marsh	6	404, 405, 418, 443, 468, 598
	Φ 21 mothers	>200 ppm	
	– Amin-Zaki	15	32 - 532 (most > 100)

Recommended Maximum MeHg Exposure in ug/kg/d

Agency	Rfd ug/k/d	<u>hair ppm</u>	blood ppb
US EPA	0.1	1	4-5
ATSDR	0.3	3	12-15
FDA	0.4	4	16-20
WHO	0.5	5	20-24

Derivation of 60,000 statement*

υ Assume EPA Rfd of 0.1 ug/kg/d is correct

υ US pop	ulation of	women 15-44	y 60	,208,000
----------	------------	-------------	------	----------

υ 30% reported fish consumption	18,363,440
---------------------------------	------------

υ	5% reported	consuming	>100 g/d	918,172
	3 / 9 = 3 9 = 3 = 3 = 3	, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 = 3, = , -

υ Birth rate	for women	15-44 v	in US	65.6/1000
	TOT MOTITOIT			

υ Newborns at high risk annually 60,232

*Letter from chair of NAS 12/6/00 explaining derivation

